Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38598385

RESUMO

Motion mapping between characters with different structures but corresponding to homeomorphic graphs, meanwhile preserving motion semantics and perceiving shape geometries, poses significant challenges in skinned motion retargeting. We propose M-R2ET, a modular neural motion retargeting system to comprehensively address these challenges. The key insight driving M-R2ET is its capacity to learn residual motion modifications within a canonical skeleton space. Specifically, a cross-structure alignment module is designed to learn joint correspondences among diverse skeletons, enabling motion copy and forming a reliable initial motion for semantics and geometry perception. Besides, two residual modification modules, i.e., the skeleton-aware module and shape-aware module, preserving source motion semantics and perceiving target character geometries, effectively reduce interpenetration and contact-missing. Driven by our distance-based losses that explicitly model the semantics and geometry, these two modules learn residual motion modifications to the initial motion in a single inference without post-processing. To balance these two motion modifications, we further present a balancing gate to conduct linear interpolation between them. Extensive experiments on the public dataset Mixamo demonstrate that our M-R2ET achieves the state-of-the-art performance, enabling cross-structure motion retargeting, and providing a good balance among the preservation of motion semantics as well as the attenuation of interpenetration and contact-missing.

2.
ACS Appl Bio Mater ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651365

RESUMO

Bacterial invasion hinders the healing process of wound, leading to the formation of chronic infected wound; meanwhile, the misuse of antibiotics has resulted in the emergence of numerous drug-resistant bacteria. The application of conventional antimicrobial methods and wound treatment techniques is not appropriate for wound dressings. In this paper, quaternized poly(vinyl alcohol) (QPVA) and pomegranate-like copper uniformly doped polydopamine nanoparticles (PDA@Cu) were introduced into a gelatin-oxidized carboxymethyl cellulose system to form a multicomponent synergistic antibacterial hydrogel (GOQ3P3). Polydopamine improves the biocompatibility and prevents the detachment of Cu nanoparticles. It can achieve synergistic antibacterial effects through quaternary ammonium salt-inorganic nanoparticle photothermal treatment under 808 nm near-infrared (NIR) irradiation. It exhibits highly efficient and rapid bactericidal properties against Escherichia coli, Staphylococcus aureus, and MRSA (methicillin-resistant Staphylococcus aureus) with an antibacterial rate close to 100%. The gel scaffold composed of macromolecules gives the hydrogel excellent mechanical properties, adhesive capabilities, self-healing characteristics, biocompatibility, and pH degradation and promotes cell adhesion and migration. In a full-thickness wound healing model infected with MRSA, GOQ3P3 controls inflammatory responses, accelerates collagen deposition, promotes angiogenesis, and enhances wound closure in the wound healing cascade reaction. This study provides a feasible strategy for constructing dressings targeting chronic infection wounds caused by drug-resistant bacteria.

3.
Hepatol Int ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528292

RESUMO

BACKGROUND: Children and adolescents are at high risk for acute viral hepatitis (AVH), but epidemiological research focusing on them has been overshadowed by adult chronic B and C. We provide global, regional, and national estimates of the AVH burden and their trends on people under 20 years from 1990 to 2019. METHODS: AVH data from Global Burden of Disease Study (GBD) 2019 was used. Incidence and disability-adjusted life years (DALYs) were calculated, analyzing trends with estimated annual percentage change (EAPC) and Joinpoint regression. RESULTS: In 2019, 156.39 (95% uncertainty interval 145.20-167.16) million new cases of AVH were reported among children and adolescents globally, resulting in 1.98 (1.50-2.55) million DALYs. Incidence rates for young children (< 5 years), older children (5-9 years), and adolescents (10-19 years) were 12,799 (11,068-14,513), 5,108 (4829-5411), and 3020 (2724-3339) per 100,000 population, respectively. The global AVH incidence displayed a linear decline with an EAPC of - 0.66 (- 0.68 to - 0.65). High-incidence regions included sub-Saharan Africa, Oceania, South Asia, and Central Asia, with India, Pakistan, and Nigeria facing the greatest burden. Leading causes were hepatitis A, followed by hepatitis E, B, and C. All hepatitis types showed declining trends, especially hepatitis B. Furthermore, we confirmed the association between the AVH incidence and the socioeconomics, vaccine, and advanced liver diseases. CONCLUSION: Effective vaccines and treatments for hepatitis B and C offer eradication opportunities. Broadening diagnostic and therapeutic coverage is vital to address disparities in service provision for children and adolescents.

4.
PeerJ ; 12: e17000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435984

RESUMO

Pit mud (PM) is among the key factors determining the quality of Nongxiangxing baijiu, a Chinese liquor. Microorganisms present inside PM are crucial for the unique taste and flavor of this liquor. In this study, headspace solid-phase microextraction was used in combination with gas chromatography and high-throughput sequencing to determine the volatile compounds and microbial community structure of 10- and 40-year PM samples from different spaces. The basic physicochemical properties of the PM were also determined. LEfSe and RDA were used to systematically study the PM in different time spaces. The physicochemical properties and ester content of the 40-year PM were higher than those of the 10-year PM, but the spatial distribution of the two years PM samples exhibited no consistency, except in terms of pH, available phosphorus content, and ester content. In all samples, 29 phyla, 276 families, and 540 genera of bacteria, including four dominant phyla and 20 dominant genera, as well as eight phyla, 24 families, and 34 genera of archaea, including four dominant phyla and seven dominant genera, were identified. The LEfSe analysis yielded 18 differential bacteria and five differential archaea. According to the RDA, the physicochemical properties and ethyl caproate, ethyl octanoate, hexanoic acid, and octanoic acid positively correlated with the differential microorganisms of the 40-year PM, whereas negatively correlated with the differential microorganisms of the 10-year PM. Thus, we inferred that Caproiciproducens, norank_f__Caloramatoraceae, and Methanobrevibacter play a dominant and indispensable role in the PM. This study systematically unveils the differences that affect the quality of PM in different time spaces and offers a theoretical basis for improving the declining PM, promoting PM aging, maintaining cellars, and cultivating an artificial PM at a later stage.


Assuntos
Envelhecimento , Microbiota , Humanos , Líquido Amniótico , Archaea , Ésteres , Microbiota/genética
5.
Nat Commun ; 15(1): 2139, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459016

RESUMO

The pressing demand for sustainable energy storage solutions has spurred the burgeoning development of aqueous zinc batteries. However, kinetics-sluggish Zn2+ as the dominant charge carriers in cathodes leads to suboptimal charge-storage capacity and durability of aqueous zinc batteries. Here, we discover that an ultrathin two-dimensional polyimine membrane, featured by dual ion-transport nanochannels and rich proton-conduction groups, facilitates rapid and selective proton passing. Subsequently, a distinctive electrochemistry transition shifting from sluggish Zn2+-dominated to fast-kinetics H+-dominated Faradic reactions is achieved for high-mass-loading cathodes by using the polyimine membrane as an interfacial coating. Notably, the NaV3O8·1.5H2O cathode (10 mg cm-2) with this interfacial coating exhibits an ultrahigh areal capacity of 4.5 mAh cm-2 and a state-of-the-art energy density of 33.8 Wh m-2, along with apparently enhanced cycling stability. Additionally, we showcase the applicability of the interfacial proton-selective coating to different cathodes and aqueous electrolytes, validating its universality for developing reliable aqueous batteries.

6.
Adv Mater ; : e2310791, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299804

RESUMO

Blue energy between seawater and river water is attracting increasing interest, as one of the sustainable and renewable energy resources that can be harvested from water. Within the reverse electrodialysis applied in blue energy conversion, novel membranes with nanoscale confinement that function as selective ion transport mediums are currently in high demand for realizing higher power density. The primary challenge lies in constructing well-defined nanochannels that allow for low-energy barrier transport. This work proposes a concept for nanofluidic channels with a simultaneous dual electrostatic effect that can enhance both ion selectivity and flux. To actualize this, this work has synthesized propidium iodide-based two-dimensional polymer (PI-2DP) membranes possessing both skeleton charge and intrinsic space charge, which are spatially aligned along the ion transport pathway. The dual charge design of PI-2DP significantly enhances the electrostatic interaction between the translocating anions and the cationic polymer framework, and a high anion selectivity coefficient (≈0.8) is reached. When mixing standard artificial seawater and river water, this work achieves a considerable power density of 48.4 W m-2 , outperforming most state-of-the-art nanofluidic membranes. Moreover, when applied between the Mediterranean Sea and the Elbe River, an output power density of 42.2 W m-2 is achieved by the PI-2DP. This nanofluidic membrane design with dual-layer charges will inspire more innovative development of ion-selective channels for blue energy conversion that will contribute to global energy consumption.

7.
Adv Mater ; : e2313621, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316395

RESUMO

Rechargeable aqueous zinc batteries are potential candidates for sustainable energy storage systems at a grid scale, owing to their high safety and low cost. However, the existing cathode chemistries exhibit restricted energy density, which hinders their extensive applications. Here, a tellurium redox-amphoteric conversion cathode chemistry is presented for aqueous zinc batteries, which delivers a specific capacity of 1223.9 mAh gTe -1 and a high energy density of 1028.0 Wh kgTe -1 . A highly concentrated electrolyte (30 mol kg-1 ZnCl2 ) is revealed crucial for initiating the Te redox-amphoteric conversion as it suppresses the H2 O reactivity and inhibits undesirable hydrolysis of the Te4+ product. By carrying out multiple operando/ex situ characterizations, the reversible six-electron Te2- /Te0 /Te4+ conversion with TeCl4 is identified as the fully charged product and ZnTe as the fully discharged product. This finding not only enriches the conversion-type battery chemistries but also establishes a critical step in exploring redox-amphoteric materials for aqueous zinc batteries and beyond.

8.
Analyst ; 149(3): 768-777, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38108435

RESUMO

Long nanosecond pulses have been proven to be efficient at enhancing underwater LIBS emission. However, the quantitative analytical capability of underwater long-pulse LIBS has yet to be further revealed. In this work, we investigated the spectral characteristics by irradiating with a laser pulse of 120 ns duration. The alkali and alkaline earth metals Li, K and Ca and the transition element Mn were selected for analysis. It is shown that obvious self-reversal structures were observed in the spectra at high concentrations, making the calibration curves saturated. Correction was performed using the approximate Voigt function fitting method, which significantly improves the linearity of the calibration curves. In addition to the target metal elements, atomic lines of the matrix elements H and O in water were also observed, which can serve as promising internal standards for quantitative analysis. A comparison of the quantification performance with and without the internal standards demonstrates that the use of the internal standards is conducive to improving the robustness of the calibration approaches with higher determination coefficients. More importantly, the underwater LIBS signal stability is improved by more than 3 times, and the prediction error for validation samples is reduced by 2-4 times. The present results suggest that long ns pulses are favorable to significantly improving the qualitative and quantitative performance of underwater single-pulse LIBS, enabling long-pulse LIBS to have great potential to be applied to underwater in situ chemical analysis.

9.
Sci Rep ; 13(1): 21733, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066026

RESUMO

Based on geographical distribution, cultivated Chinese Angelica dahurica has been divided into Angelica dahurica cv. 'Hangbaizhi' (HBZ) and Angelica dahurica cv. 'Qibaizhi' (QBZ). Long-term geographical isolation has led to significant quality differences between them. The secretory structure in medicinal plants, as a place for accumulating effective constituents and information transmission to the environment, links the environment with the quality of medicinal materials. However, the secretory tract differences between HBZ and QBZ has not been revealed. This study aimed to explore the relationship between the secretory tract and the quality of two kinds of A. dahurica. Root samples were collected at seven development phases. High-Performance Liquid Chromatography (HPLC) and Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI) were used for the content determination and spatial location of coumarins. Paraffin section was used to observe and localize the root secretory tract. Origin, CaseViewer, and HDI software were used for data analysis and image processing. The results showed that compared to QBZ, HBZ, with better quality, has a larger area of root secretory tracts. Hence, the root secretory tract can be included in the quality evaluation indicators of A. dahurica. Additionally, DESI-MSI technology was used for the first time to elucidate the temporal and spatial distribution of coumarin components in A. dahurica root tissues. This study provides a theoretical basis for the quality evaluation and breeding of improved varieties of A. dahurica and references the DESI-MSI technology used to analyze the metabolic differences of various compounds, including coumarin and volatile oil, in different tissue parts of A. dahurica.


Assuntos
Angelica , Óleos Voláteis , Plantas Medicinais , Angelica/química , Melhoramento Vegetal , Cumarínicos/química , Cromatografia Líquida de Alta Pressão/métodos
10.
Phys Chem Chem Phys ; 25(41): 28086-28093, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37817676

RESUMO

The competition between E2 and SN2 reactions is essential in organic chemistry. In this paper, the reaction mechanism of F- + CH3CH2Cl is investigated utilizing direct dynamics simulations, and unravel how the collision energy (Ecoll) and the leaving group affect the competition between SN2 and E2 in the F- + CH3CH2Y (Y = Cl and Br) reactions. Simulation results for F- + CH3CH2Cl reaction show that the anti-E2 channel is dominant, but with the increase of Ecoll from 0.04 to 1.9 eV the branching ratio of the anti-E2 pathway significantly decreases by 21%, and the SN2 pathway becomes more important. A transition from indirect to direct reaction has been revealed when Ecoll is increased from 0.04 to 1.90 eV. At lower Ecoll, a large ratio of indirect events occurs via a long-lived hydrogen-bonded complex, and as the collision energy is increased, the lifetimes of the hydrogen-bonded complexes are shortened, due to an initial faster relative velocity. The simulation results of F- + CH3CH2Cl are further compared with the F- + CH3CH2Br reaction at Ecoll of 0.04 eV. Changing the leaving group from Cl to Br drastically suppresses the indirect events of anti-E2 with a branching ratio decreasing from 0.46 to 0.36 due to the mass effect, and promotes direct rebound mechanism resulting from a looser transition state geometry caused by varied electronegativity.

11.
Molecules ; 28(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37687098

RESUMO

The competition between base-induced elimination (E2) and bimolecular nucleophilic substitution (SN2) is of significant importance in organic chemistry and is influenced by many factors. The electronic structure calculations for the gas-phase reactions of F- + RY (R = CH3, C2H5, iC3H7, tC4H9, and Y = Cl, I) are executed at the MP2 level with aug-cc-pVDZ or ECP/d basis set to investigate the α-methyl substitution effect. The variation in barrier height, reaction enthalpy, and competition of SN2/E2 as a function of methyl-substitution and leaving group ability has been emphasized. And the nature of these rules has been explored. As the degree of methyl substitution on α-carbon increases, the E2 channel becomes more competitive and dominant with R varying from C2H5, iC3H7, to tC4H9. Energy decomposition analysis offers new insights into the competition between E2 and SN2 processes, which suggests that the drop in interaction energy with an increasing degree of substitution cannot compensate for the rapid growth of preparation energy, leading to a rapid increase in the SN2 energy barrier. By altering the leaving group from Cl to I, the barriers of both SN2 and E2 monotonically decrease, and, with the increased number of substituents, they reduce more dramatically, which is attributed to the looser transition state structures with the stronger leaving group ability. Interestingly, ∆E0‡ exhibits a positive linear correlation with reaction enthalpy (∆H) and halogen electronegativity. With the added number of substituents, the differences in ∆E0‡ and ∆H between Y = Cl and I likewise exhibit good linearity.

12.
Chem Sci ; 14(37): 10308-10317, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37772105

RESUMO

The interface microenvironment of doped quantum dots (QDs) is crucial in optimizing the properties associated with the photogenerated excitons. However, the imprecision of QDs' surface structures and compositions impedes a thorough understanding of the modulation mechanism caused by the complex interface microenvironment, particularly distinguishing the contribution of surface dopants from inner ones. Herein, we investigated interface-mediated emission using a unique model of an atomically precise chalcogenide semiconductor nanocluster containing uniform near-surface Mn2+ dopants. Significantly, we discovered that Mn2+ ions can directly transfer charges with hydrogen-bonding-bound electron-rich alkylamines with matched molecular configurations and electronic structures at the interface. This work provides a new pathway, the use of atomically precise nanoclusters, for analyzing and enhancing the interface-dependent properties of various doped QDs, including chalcogenides and perovskites.

13.
Biochem Pharmacol ; 214: 115676, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37419372

RESUMO

Post-transplant lymphoproliferative disorder (PTLD) is one of the most serious complications after transplantation. Epstein-Barr virus (EBV) is a key pathogenic driver of PTLD. About 80% of PTLD patients are EBV positive. However, the accuracy of preventing and diagnosing EBV-PTLD by monitoring EBV DNA load is limited. Therefore, new diagnostic molecular markers are urgently needed. EBV-encoded miRNAs can regulate a variety of EBV-associated tumors and are expected to be potential diagnostic markers and therapeutic targets. We found BHRF1-1 and BART2-5p were significantly elevated in EBV-PTLD patients, functionally promoting proliferation and inhibiting apoptosis in EBV-PTLD. Mechanistically, we first found that LZTS2 acts as a tumor suppressor gene in EBV-PTLD, and BHRF1-1 and BART2-5p can simultaneously inhibit LZTS2 and activate PI3K-AKT pathway. This study shows that BHRF1-1 and BART2-5p can simultaneously inhibit the expression of tumor suppressor LZTS2, and activate the PI3K-AKT pathway, leading to the occurrence and development of EBV-PTLD. Therefore, BHRF1-1 and BART2-5p are expected to be potential diagnostic markers and therapeutic targets for EBV-PTLD patients.


Assuntos
Infecções por Vírus Epstein-Barr , Transtornos Linfoproliferativos , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/complicações , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/diagnóstico , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Virais/metabolismo
14.
ACS Appl Bio Mater ; 6(5): 1992-2002, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37126576

RESUMO

A traditional injectable photocrosslinked hydrogel had disadvantages of the residual photoinitiator and toxic crosslinker, slow in situ curing, and a complex preparation process. At the same time, hydrogels cannot act as artificial skin to restore skin sensory function during the wound healing cycle. In this work, an injectable photocrosslinked hydrogel was prepared which can be quickly in situ cured without photoinitiator. Oxidized sodium alginate was used as a natural macromolecular crosslinking agent to form an injectable hydrogel framework with the photosensitive polymer polyvinyl alcohol bearing styrylpyridinium group (PVA-SBQ). In addition, the hydrogel was endowed with photothermal therapy property after the introduction of biomass-like polydopamine particles. When used as a wound dressing, the hydrogel exhibited an excellent antibacterial property, with an antibacterial rate of 99.56% Escherichia coli and 97.96% Staphylococcus aureus. As a result, the hydrogel could significantly accelerate the repair of infected wounds, with a wound healing rate of 96.45% after 14 days. Moreover, the hydrogel exhibited a sensitive and stable sensing property, making it promising to reconstitute the sensory function of damaged skin during treatment. This work provides an idea for the development of injectable photocrosslinked hydrogel dressing.


Assuntos
Hidrogéis , Cicatrização , Hidrogéis/farmacologia , Bandagens , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
15.
Adv Mater ; 35(32): e2300907, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37132284

RESUMO

Iron-nitrogen-carbon (FeNC) materials have emerged as a promising alternative to platinum-group metals for catalyzing the oxygen reduction reaction (ORR) in proton-exchange-membrane fuel cells. However, their low intrinsic activity and stability are major impediments. Herein, an FeN-C electrocatalyst with dense FeN4 sites on hierarchically porous carbons with highly curved surfaces (denoted as FeN4 -hcC) is reported. The FeN4 -hcC catalyst displays exceptional ORR activity in acidic media, with a high half-wave potential of 0.85 V (versus reversible hydrogen electrode) in 0.5 m H2 SO4 . When integrated into a membrane electrode assembly, the corresponding cathode displays a high maximum peak power density of 0.592 W cm-2 and demonstrates operating durability over 30 000 cycles under harsh H2 /air conditions, outperforming previously reported Fe-NC electrocatalysts. These experimental and theoretical studies suggest that the curved carbon support fine-tunes the local coordination environment, lowers the energies of the Fe d-band centers, and inhibits the adsorption of oxygenated species, which can enhance the ORR activity and stability. This work provides new insight into the carbon nanostructure-activity correlation for ORR catalysis. It also offers a new approach to designing advanced single-metal-site catalysts for energy-conversion applications.

16.
Langmuir ; 39(22): 7968-7978, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37229539

RESUMO

The iron core and heat sink in a mining transformer are susceptible to damage from oil spills or the harsh mine environment; the deterioration of oil products in the underground environment and transformers produce massive amounts of harmful liquid substances, which may lead to unnecessary economic losses in drilling engineering. To overcome this issue, a convenient and economical way to protect transformer components was developed. Herein, we proposed an air spray technology at room temperature for the preparation of antigreasy superamphiphobic coatings, which are suitable for bulk metallic glass transformer cores and ST13 heat sinks. The addition of polypyrrole powder effectively improves the thermal conductivity and specific heat of the coating in the range of 50-70 °C. More importantly, the fabricated coating has excellent repellency to liquids, such as water, ethylene glycerol, hexadecane, and rapeseed oil. Meanwhile, the coating has excellent physical and chemical resistance and outstanding antifouling features, which provide a feasible solution for combating grease pollution and corrosion in the mine environment. Taking multifaceted stability into consideration, this work contributes to enhancing the application of superamphiphobic coatings in the fields of protecting transformer components in the harsh environment or during transformer operation faults.

17.
Food Res Int ; 169: 112885, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254333

RESUMO

Ethyl hexanoate and ethyl butyrate are essential to the flavor compounds in Nongxiangxing baijiu, but low levels of these two esters in upper fermented grains (FG) decreases the quality of upper distilled baijiu, representing the main challenge in Nongxiangxing baijiu production. This paper enhanced fermentation by inoculating functional Clostridium butyricum, Rummeliibacillus suwonensis, and Issatchenkia orientalis strains into upper FG. The results showed that the ethyl butyrate content in the upper FG increased significantly and the content of ethyl hexanoate did improve from the results of many determinations. High-throughput sequencing indicated that the dominant phyla in the FG were Firmicutes, Actinobacteriota, Proteobacteria, Ascomycota, and Basidiomycota. The canonical correspondence analysis (CCA) and person correlation network revealed the relationship between the microbial community, physicochemical environment, and flavor compounds. The temperature, oxygen, and acidity were closely related to the microbial community, while most flavor compounds were positively correlated with Caldicoprobacter, Caproiciproducens, Delftia, Hydrogenispora, Thermoactinomyces, Issatchenkia Bacillus, and Aspergillus. These results helped improve the quality of Nongxiangxing baijiu.


Assuntos
Clostridium butyricum , Microbiota , Humanos , Bebidas Alcoólicas/análise , Fermentação
18.
J Ethnopharmacol ; 315: 116679, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37257711

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Duhuo Jisheng decoction is a traditional Chinese formula that has been widely used in clinical practice to treat osteoarthritis, which has the effects of removing invaded cold and dampness, relieving joint pain. However, it is difficult to determine the effective substances and mechanisms due to assorted herbs and components, and further research is needed. AIM OF THE STUDY: This study was designed to explore and verify the mechanism and targets of DHJSD in the treatment of OA via network analysis and experiments. METHOD: In this study, the active ingredients of DHJSD were qualitatively analyzed by UPLC-QDA. Network analysis was used to identify common targets and pathways. Next, we explored the therapeutic mechanism of DHJSD through a rat model of knee osteoarthritis. HE staining was used to judge the establishment of the animal model. ELISA and Western blotting were used to verify the expression of key pathway proteins. CONCLUSION: In this study, seventeen chemical constituents in DHJSD were identified. According to the network analysis, we obtained the potential associated pathways of action. Then, molecular docking and SPR experiments showed that the sixteen identified components had high binding energies to IL-6. HE staining showed that the high-dose group of DHJSD had an obvious therapeutic effect on model rats. Compared with the model group, the levels of IL-1ß, TNF-α, IL-6, MMP3, MMP13, ADAMTS4 and ADAMTS5 in serum and the expression of STAT3 and p-STAT3 protein in administration groups were significantly decreased. This result indicated that the IL-6/STAT3 signaling pathway was one of the important pathways regulated by DHJSD to improve OA.


Assuntos
Medicamentos de Ervas Chinesas , Osteoartrite , Ratos , Animais , Interleucina-6 , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Osteoartrite/tratamento farmacológico
19.
J Phys Chem A ; 127(15): 3381-3389, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37039624

RESUMO

The effect of nucleophiles on the gas-phase E2/SN2 competition is still not completely elucidated, despite its importance in chemistry. In the current work, the electronic structure calculations of prototypical reactions X- + CH3CH2Cl (X = OH, F, Cl, Br, and I) are performed at the MP2 level with aug-cc-pVDZ or ECP/d. The effects of nucleophiles on the competing E2 and SN2 reactions in terms of the correlation between the barrier height and reaction energy, electronegativity of X, bond length, charge distribution, and proton affinity of anionic nucleophile X- are explored and emphasized. As the nucleophile changes from OH- to I-, both SN2 and E2 reactions become more exothermic, with the reaction energy in the ranges from -51.9 to 10.8 kcal mol-1 (SN2) and -36.8 to 38.0 kcal mol-1(E2). For X- = F- and OH-, the sequence of reactivity for the four pathways is ret-SN2 < syn-E2 < anti-E2 ∼ inv-SN2. However, for X- = Cl-, Br-, and I-, the anti-E2 barrier is much higher in energy (17.1-29.4 kcal mol-1) than that of inv-SN2. Energy decomposition analysis illustrates that the anti-E2 pathway possesses the highly destabilizing characteristic distortion, resulting in a larger reaction barrier and hence becoming a more unfavorable pathway than inv-SN2. More interestingly, only ion-dipole complex exists in the entrance channel for reactions involving OH-, Cl-, Br-, and I-, and in contrast, a significant hydrogen-bonded complex formation is also revealed for X- = F-, which can further affect E2/SN2 competition and atomic-level mechanisms, especially, for the isoelectronic nucleophile F- and OH-. It has been revealed here that electronegativity of central atoms in X and ionic radii of nucleophiles are the important factors affecting the entrance channel complex.

20.
Langmuir ; 39(17): 6249-6257, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37073894

RESUMO

Developing advanced oil-water separation technology is significant for environmental conservation. According to the synergetic effects of the size-sieving mechanism, superwetting materials with small pore sizes have been designed to realize high-efficiency separation for oil-water emulsions. However, the separation flux limited by the pore size and the weakness of the superwetting material impede its practical application severely. Herein, we construct a robust Janus superwetting textile with large pore sizes for oil-in-water emulsion separation. The pristine textile is coated by the as-prepared CuO nanoparticles as the bottom layer with superhydrophilicity and then grafted by 1-octadecanethiol as the top layer with superhydrophobicity to construct the Janus textile. When used as a filter, the superhydrophobic layer acts as the nucleation site to coalesce the small oil droplets facilely. Then, the coalesced oil fills the pores of the superhydrophobic layer and selectively permeates it but is blocked by the superhydrophilic layer with large pore sizes. Utilizing the unique separation mechanism, the Janus textile realizes efficient and rapid separation. Even after multicycle separation, hot liquid immersion for 24 h, tribological test for 60 min, and sandpaper abrasion for 500 cycles, the Janus textile still retains the superwettability and excellent separation performance, manifesting outstanding stability to resist severe damage. This separation strategy provides a novel guideline for high-efficiency and high-flux emulsion separation and practical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...